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Abstract--The present paper investigates analytically the problem of heat transfer to a uon-Newtonian 
laminar falling liquid film flowing along an inclined wall for the thermally developing and thermally 
developed regions. In the developing region of the temperature profile, the Nusselt number decreases 
monotonically until the thermal boundary layer touches the interface. But immediately after this point, the 
liquid film thickness decreases as well as the temperature difference in the film. The influence of parameters 
such as a (i.e. Fr/Remoa ratio), 3' (i.e. modified form of p/z), modified Prandtl number and the flow 
behaviour index 'n '  on heat transfer results is also presented. 

INTRODUCTION 

In many industrial applications, heating or cooling of liquids is achieved by allowing the liquid 
to flow in the form of a thin film along a solid boundary maintained at a different temperature 
from that of the bulk. Fulford (1%4) presented an excellent review on falling liquid films both 
for laminar and turbulent flow conditions of the film. Modifying Dukler & Bergelin (1952) 
analysis, Hewitt (1961) investigated analytically co-current upward annular turbulent flow 
phenomena of liquid films. Assuming that the gas phase does not give rise to any shear stress at 
the free surface, Astarita et al. (1%4) measured experimentally the liquid film thickness as a 
function of inclination of the solid boundary and the discharge rate of the fluids whose 
rheological properties were not given. Normand et al. (1970) studied analytically the laminar 
liquid film thicknesses using the power law model for shear deformation. Their analysis also 
excludes the possible effects of interfacial drag of the quiescent gas. Sylvester et al. (1973) have 
presented both analytical and experimental investigations pertaining to non-Newtonian falling 
liquid films assuming the interface to be wavy and the flow is fully developed. Murty & Sastry 
(1973) studied analytically the problem of accelerating falling liquid films of the Newtonian type 
by taking into account the interfacial drag and thus their analysis is an improvement over other 
investigators. Recently an analytical expression was proposed in closed form by Stiicheli & 
0zisik (1976) for the determination of hydrodynamic entrance length for liminar falling liquid 
films. However, the analysis is mainly confined to Newtonian fluids and the influence of 
interracial shear is not accounted for. Narayana Murthy & Sarma (1977) obtained entrance 
lengths of laminar, accelerating non-Newtonian falling liquid films for no drag condition at the 
vapor-liquid interface. In a recent article, Narayana Murthy & Sarma (1978) further improved 
the analysis by including the interracial drag at the vapor-liquid interface due to the presence of 
quiescent gas adjacent to liquid film. It was observed that for certain values of a (i.e. Fr/Remod), 

the change in the curvature of the free surface is very rapid and under such circumstances the 
surface tension forces undoubtedly play significant role in the dynamics of the liquid films. 
However, the results of the analysis by Narayana Murthy & Sarma (1978) pertaining to the 
mean thickness of the liquid films for 0.4 ~< n ~< 1.4 are in confirmity with the experimental 
observations of Sylvester et al. (1973). 

In the present article, the problem of heat transfer to the thin, non-Newtonian falling liquid 
films is considered for the thermally developing and developed regions. 

tCurrent address: Higher Petroleum Institute, Tobruk, Libya. 
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PHYSICAL MODEL 

The liquid at an initial temperature to is made to flow at constant steady discharge rate from 
a slit whose height ho < L, where L is the characteristic length of the plate. The plate is 
maintained at isothermal conditions tw and tw > to for x t> 0. The physical configuration of the 
model is shown in figure 1. In the present analysis, the gas-liquid interface is assumed wave 
free and smooth. Such a condition is possible for certain range of a (i.e. Fr/Remod) as observed 
from the results of Narayana Murthy & Sarma (1978). Further, Sylvester et al. (1973) concluded 
that for Re less than the critical value Rec, the interface is smooth and also when Re > Rec, the 
visual observations confirmed that the onset of ripples or waves occured only at distances away 

from the exit of the slit. The present article confines only to the case of wave free non- 
Newtonian accelerating falling films. The moving liquid film sets the adjacent gas to motion and 

the effect of interracial drag due to the presence of the gas on the thickness of the liquid film is 

found to be minimal. 

// 

C 6, 

t 

Figure 1. Physical configuration. 

ANALYSIS 

The equations of conservation of mass, momentum and energy are respectively as follows: 

For the liquid region, 
au av 
 +Ty =o, 

( a. + au ) 
p u aX v -~y = -~y + g(p - pe) sin 0, 

a t  + at _ a2t 
U ax  Tr= TTy' 

[11 

[21 

[3] 

where u, v are the liquid velocity components in x- and y-directions respectively; p is the 
density of liquid and #g that of the gas; z is the shear stress;/3 is the thermal diffusivity; g is the 
acceleration due to gravity and O is the angle of inclination to the horizontal. 

The boundary conditions for the equation of motion are 

where 

u = v = 0  at y = 0 ,  [4] 

u = 4Umax[(y/ho)- (y2[ho2)] at x = 0, [5] 

U max = 3Gl2pho [6] 

and G is the mass flow rate per unit width. 
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Likewise, the boundary conditions for the conservation of energy equation are as follows: 

a t x = 0  t = t o  ( fo r0<y~<ho) ,  [7] 

a t y = 0  t = t w  (forx/>0) .  [8] 

In addition, the conservation of mass and momentum equations in the gas phase adjacent to the 

liquid film are 

(OU/dx) + (~ V/~ Y) = 0, [9] 

( ou) 0% pg u OU+ v - ~  = lxg [10] tgx ay 2 

where U and V are the gas velocity components; Y is the ordinate normal to the surface of the 
plate and measured from the gas-liquid interface; and/~g is dynamic viscosity of the gas. 

The boundary conditions for the equations of the gas phase are 

U = Ui (interfacial velocity) at y = 8, 

V = 0 (no phase transformation) at y -- 8, 

[11] 

[12] 

where 8 is local liquid film thickness. 
For the gas-liquid systems at x > 0 by an order of magnitude analysis it can be shown that 

(A/8) -- V'(vJvL) for n = 1 (A being local gas film thickness and v kinematic viscosity). Thus, it is 

very suggestive that A/8 ,> I for x > 0. Bearing this particular aspect in mind and also the 
absence of phase transformation at gas-liquid interface, [9] and [10] are transformed into 

integral form as below. It is true 

iz(c~u/c~y)~ly=, = i~( dU/c~ Y)ly= o [13] 

where iz = the index of consistency (and becomes Newtonian viscosity for n = 1); n is the flow 

behaviour index and n < 1 represents pseudoplastic fluids, n > 1 represents dilatant fluids, and 
n = 1 represents Newtonian fluids. 

Equation [13] is the equal shear condition at the gas-liquid interface. Thus, [1]-[13] describe 
the problem mathematically to obtain both velocity and temperature profiles. In order to 
facilitate solution, [1]-[3], [9] and [10] are put in an integro-differentiai form as follows: 

For the liquid region, 

-~x pu dy = 0, [14] 

d"~ pu 2 dy = (riL -- Zw) + gp8 sin 0. [15] 

For the gas region, 

d E dx pgU d Y =  -pgVa, [16] 

d f ?  p, U2 dY=-'r,~ [17] 

where the subscript iL represents interface liquid, ig represents interface gas and A at A. 
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In the liquid region, the energy equation takes the shape 

d f6,  puCp(t - to)dy  = - K  d t  
dx Jo dy y=0 

[18] 

where Cp is specific heat of liquid at constant pressure, K is thermal conductivity of the liquid 
and 8, is thermal boundary layer thickness. 

In [18] the upper limit of the integral is 8,, the thermal boundary layer which is smaller than 
the actual thickness of the liquid film in the region x = 0. The thermal boundary layer, 8, starts 
developing from a value 8t = 0 at x = 0 to 8, = 8 at some unknown location, x. This particular 
region can be termed as the thermally developing region. Beyond this point, the interface 
temperature also changes in such a manner that the energy balance is satisfied. In the thermally 
developed region, the energy equation in integro-differential form can be written as 

puCpt dy = - K  ~YYl r=0" [191 

Thus, [15]-[19] can be solved only when the velocity and temperature profiles are known a 
priori. The following are the velocity profiles assumed in the analysis both in the liquid and gas 
phases. For the liquid region, 

u = a U m a x f , ( / ~ ' / - - r / 2 )  [201 

where rt, the dimensionless space coordinate = yl8 and It and [2 are unknown functions of x. 
The velocity profile in the gas phase should satisfy the following conditions, viz., 

U = U i  a t Y = 0 ,  [21] 

OU 02U ornu 
O----Y = O Y 2 . . . . . . . .  O Y "  = 0 at Y = A [22] 

where m is an arbitrary integer representing the order of the derivative. Equation [22] can be 
construed as a smoothen constraint at Y = 4. It is observed by Narayana Murthy & Sarma 
(1978) that the choice of a fourth degree polynomial as a velocity profile gave identically same 
values as observed by Murty & Sastry (1973). However, Murty & Sastry (1973) used an 
exponential function for the gas phase velocity. Thus, for further analysis the following velocity 
profile is chosen: 

( if_U= 1 -  [23] 
u, 

The temperature profile for the thermally developing region is 

t - t o  _ O = l _ 3 U  l ( y )  3 
tw--to 2 ~ + 2  ~ ' 

[241 

satisfying the conditions 

t = to a ty=8 , ,  

t = t w  a t y = 0 ,  

Otl Oy = O a ty=6 , ,  

c~2tlOy 2 = 0 at y = 0. 

[25] 

[26] 

[271 

[28] 
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For the thermally developed region, 

t - t o  _ f f = l _ ~ b ( x ) [ 3 y  1(~)3 l 
t~ - to ~ ~ - ~ [29] 

where 4}(x) is unknown function of x (i.e. flow direction). At the point of transition between the 
thermally developing region and thermally developed region, the temperature profiles, (i.e. [24] 
and [29]) should be identical. In other words, &(x) = 1 at x = XCntiCal. Thus, [15], [17]-[19] can be 
manipulated respectively to the forms shown below: 

~A 1 3 5 1 1  ] [/.i{10/"2 + (4//"2) - 5}] = T ~ - (413)"/"12"/"2"{(4 -/"2)" + (f2 + 2)"} , [30] 

d [/"1(3--2"'(f2 - 1) 3]  = {42n--4"~ 
dA [ ~ } - a -  j \~-~z~] "},[ft2/"2(4--f2)] ", [31] 

d~- [ 1 ~'(f2 + 2)~ "2 L~[- 6- ~43}] 15/.i/"2 1 
Pr* ' [32] 

d ,7ok I l l  3 (/.1/.2~)~, 
6 

[33] 

where A, dimensionless distance ,-2 ,+1 = (tZUmaxx/pho ); a, dimensionless number= Fr/Remod; Fr, 

Froude number = (U2ax/gho sin 0); Remod, modified Reynolds number = (pu2-~]ho"/tz); y, dimen- 
sionless _ .- t  .-i  . number -  (IZpUm~x/l~gpgho ), ~', dimensionless ratio = 6,/8; and Pr*,  modified Prandtl 
number n-I  n-I  = (ttCp/K)(umax[ho ). 

The boundary conditions for [30] to [33] are 

at;t =0  /"1 = f2 = 1 and sr = 0, 

at A = Acritical(unknown), 4, = 1. 

Equations [30] to [32] can be solved simultaneously for various values of A till such time ,~ 
tends to 1. However, when s r = 1, the simultaneous solution is accomplished with [30], [31] and 
[33] to obtain the unknowns [l, 1"2, ~" and &. No further attempt is made to analyse the dynamics 
of the liquid film, as the problem is already presented by the authors elsewhere (Narayana 
Murthy & Sarma, 1978). To conserve space, the heat transfer aspects only are discussed 
further. 

HEAT TRANSFER COEFFICIENT 

From a practical point of view, the heat-transfer coefficient is important and by definition we 
have 

q~ = - K ( r~t/ Oy )l,=o. [34] 

Also we tentatively define the heat-transfer coefficient taking the inlet temperature as reference 
value, 

qw = h(tw - to) [35] 

where h is the local heat-transfer coefficient. 
Thus, from [24], [34] and [35] for the thermally developing region we get 

hholK = Nul(NUsselt number) = (3/2)(flf21~). [36] 
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For the thermally developed region from [29], [34] and [35] we get the local Nusse l t  value as 

hho/K = Nu2 = 1.5~f ~[2. [37] 

R E S U L T S  

Temperature profiles 
The temperature profiles at various locations for different values of 'n' and for two values of 

a are shown plotted in figures 2 and 3. It is observed that for a = 0.01 and A = 0.001 the 

temperature profile is unique and more or less identical for all values of 'n' (0.4 < n < 1.4). For 
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Figure 2. Temperature profiles at different locations. 
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Figure 3. Temperature profiles at different locations. 
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a = 0.001 and A = 0.001, separate temperature profiles are observed for different values of 'n ' .  
However,  in all the cases at distances far away from the slit (i.e. A > 0.001), the distortion from 

the linearity in the temperature profiles is more pronounced. Further, for the given location, the 

slope of the temperature curve is dependent on 'n ' ,  the index in the Ostwald-de-Waele 
expression. As ' n '  decreases, the gradient in the temperature profile at the wall decreases. 

The influence of T on the temperature profiles for different values of the index 'n '  is shown 
in figure 4. For n < l, as y increases, the slope of the temperature function at the solid 
boundary increases. However,  for n I> 1, the reverse is the case. Further, the effect of F on the 
temperature profiles is not observed and totally absent as evident from figure 4 [where F is 
defined by the authors in Reference (1978)]. 

I 0  

0 . 8  

0 6  

0 4  

0 .2  

I ' I ' ' I ' 

x = o . o l  

a = 0 . 0 0 1  

F = 0 . 1 , 0 . 0 1  
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7" = I 0 0 0  

7 = I 0 0  

=1 .4  

n = 0 . 4  ~'~ 

, I , I ~ , I 
0 . 2  0 4  0 6  0 8  

y / ~  

Figure 4. Influence of y on temperature profiles. 

1 
I.O 

The influence of a on temperature profiles at A = 0.01 is shown for two values of a (i.e. 
a = 0.001, 0.01) in figure 5 for different values of 'n ' .  It is observed that the profiles for t~ = 0.01 
lie above the profiles for a = 0.001. 

The influence of the modified Prandtl number on the temperature profiles in the thermally 
developing and thermally developed regions is respectively shown in figures 6 and 7. As Prandti 

number increases for a given value of 'n ' ,  the gradient of the temperature curve decreases in the 
thermally developing region. However,  a different trend is observed in the thermally developed 
region. For Prandtl number l0 and for a given value of 'n ' ,  the slope of the temperature profile 
is more than that for the case of Prandtl number 5. Thus, the nature of the temperature profiles 
are different for the two regions (thermally developing and thermally developed regions). 

Heat trans[er results 
The heat transfer results are shown plotted in figures 8-15. In the thermally developing 

region, the influence of the modified Prandtl number is shown in figure 8 for very low values of 
A (i.e. A < 24 x 10-7). The heat-transfer curves are monotonic in nature and as can be anti- 
cipated, at x = 0, the Nusselt number is maximum and gradually goes on decreasing along the 
flow direction. As one would expect, increase in modified Prandtl number leads to an increase 
in the local Nusselt value. Further, one interesting feature is that for low values of A (i.e. 
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Figure  6. I n f l u e n c e  o f  Pr*  on t e m p e r a t u r e  prof i les ,  

A < 2 4 x  10-7), the influence of 'n' on hat-transfer results is not observed and a single heat 

transfer characteristic is obtained for different values of 'n' (i.e. 0.4 < n < 1.4) for that particular 

combination of the parameters F, a and 1'. 
For very high values of A (i.e. 0.005 ~< A ~< 0.12), the variation of Nusselt number along the 

flow direction is shown in figures 9 and 10 for modified Prandtl number values of 5 and 100. In 
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Figure 7. Influence of Pr* on temperature profiles (thermally developed region). 
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Figure 8. Influence of Pr* on Nu for ~t < 24 x 10 -7. 

both the cases at distances far away from the exit of the slit, it is observed that for 
pseudoplastic fluids, the Nusselt  values are more than those for Newtonian and dilatant fluids. 

In the developing region, the influence of y on the heat transfer variation along the flow 
direction is shown in figure 11. As ~ increases, the transfer coefficient increases. 

From figure 12, it is clear that as a increases, the Nusselt  number decreases. In addition, for 
a = 0.1 different curves are obtained for different values of 'n' but whereas for low values of a 

MF Vol. 4, No. 4----E 
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(i.e. a = 0.01), the effect of 'n' on the heat transfer characteristics is not being felt, i.e. a single 
monotonic characteristic is obtained. 

In figures 13 and 14 the influence of a on the heat-transfer results is shown. As already 
pointed out, the Nusselt number monotonically decreases in the developing region and when 
the thermal boundary layer attains the same thickness as the liquid film, a slight increase in heat 
transfer values for a = 0.001 and 0.01 is observed. The decrease in the local Nusselt number in 
the thermally developing region is because of the monotonic increase in the thickness of the 

thermal boundary layer. The thermal boundary layer lies between two isotherms, viz. the 
constant wall temperature and the constant inlet temperature. Immediately after the developing 
thermal boundary layer meets the interface, the interface is no longer an isotherm and the 
interface temperature increases. Thus, the Nusselt variation depends on the rate at which 
interface temperature is increasing as well as on the rate at which the liquid film thickness is 
decreasing (see [37]). From figures 13 and 14 it is also seen that for small values of a the 
Nusselt number falls very steeply to a small value whereas for large values of a the rate of 
decrease is slower. Small values of a means smaller film thicknesses which in turn are 
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Figure 15. Influence of Pr* on Nu. 

responsible for heating to be affected at a faster rate. The influence of 'n' on Nusselt number is 
also shown in figure 14. In the thermally developed region for X > 0.9, as 'n' increases the 
Nusselt value also increases. 

In figure 15 the influence of modified Prandtl on heat transfer results is shown. It is observed 
that in the fully developed thermal region and for a > 0.3 as Prandtl number decreases, the 
Nusselt number increases. However, all the computations are limited to A ~< 1.0. 
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